Indexed by:
Abstract:
In this paper, an approach for robust matching shadow areas in autonomous visual navigation and planetary landing is proposed. The approach begins with detecting shadow areas, which are extracted by Maximally Stable Extremal Regions (MSER). Then, an affine normalization algorithm is applied to normalize the areas. Thirdly, a descriptor called Multiple Angles-SIFT (MA-SIFT) that coming from SIFT is proposed, the descriptor can extract more features of an area. Finally, for eliminating the influence of outliers, a method of improved RANSAC based on Skinner Operation Condition is proposed to extract inliers. At last, series of experiments are conducted to test the performance of the approach this paper proposed, the results show that the approach can maintain the matching accuracy at a high level even the differences among the images are obvious with no attitude measurements supplied.
Keyword:
Reprint Author's Address:
Email:
Source :
EARTH MOON AND PLANETS
ISSN: 0167-9295
Year: 2017
Issue: 2-3
Volume: 119
Page: 95-124
0 . 9 0 0
JCR@2022
ESI Discipline: SPACE SCIENCE;
ESI HC Threshold:200
CAS Journal Grade:4
Cited Count:
WoS CC Cited Count: 6
SCOPUS Cited Count: 8
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 7
Affiliated Colleges: