Indexed by:
Abstract:
提出一种基于卷积神经网络推测城市交通小区内用地特征的算法,同时对交通小区内多种用地类型进行预测.选用公共交通出行数据集和网约车出行数据集,融合多种出行方式的出行特征对交通小区内用地特征刻画.提取交通小区内发生强度,吸引强度和产吸差强度3个指标作为模型输入,训练得到基于区域内出行特征双通道的卷积神经网络模型,采用网格寻优方法确定最优网络结构.选取北京市六环内交通小区作为研究对象,结果表明,本文算法能够同时推断交通小区内居住、工作和休闲用地特征,并获得各用地类型在小区内占比分布.
Keyword:
Reprint Author's Address:
Email:
Source :
交通运输系统工程与信息
Year: 2020
Issue: 05
Volume: 20
Page: 29-35
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 6
Affiliated Colleges: