Indexed by:
Abstract:
We report the preparation and characterization of Li1.2Ni0.2Mn0.6O2 (=0.5Li(2)MnO(3)center dot 0.5LiNi(0.5)Mn(0.5)O(2)) microspheres as cathode materials for lithium ion batteries. These microspheres were synthesized by carbonate co-precipitation and calcination with lithium salt. The samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, inductively coupled plasma-atomic emission spectrometer, and nitrogen adsorption. It is found that the synthesized samples, of spherical morphology with primary nanoparticles assembled in secondary microparticles, have a diameter of similar to 5 mu m. When used as the cathode materials for lithium ion batteries, the sample prepared at aging time of 9 h with ammonia concentration of 0.6 mol L-1 shows excellent electrochemical performance. Their charge capacities are 274 mAh g(-1) at the current density of 20 mA g(-1), much higher than those of the commercial LiCoO2 and LiFePO4. More importantly, they exhibit excellent rate performances with a capacity of 165 and 144 mAh g(-1) at the current densities of 600 and 1000 mA g(-1), respectively, superior to those of other reported Li-rich cathode materials. This work illustrates the relation among synthesis condition, inner structure and electrochemical performance, which has a positive effect on industry production. (C) 2016 Elsevier Ltd. All rights reserved.
Keyword:
Reprint Author's Address:
Email:
Source :
ELECTROCHIMICA ACTA
ISSN: 0013-4686
Year: 2016
Volume: 191
Page: 491-499
6 . 6 0 0
JCR@2022
ESI Discipline: CHEMISTRY;
ESI HC Threshold:221
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 15
SCOPUS Cited Count: 16
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 6