Indexed by:
Abstract:
This study made an attempt to understand and control the heteroepitaxial growth of GaN from the view of the essential behaviors of crystal growth. Through a comparison of the nonpolar, polar and semipolar GaN epitaxial film, the influence of lateral growth on the surface pit formation mechanism has been investigated. For a-plane GaN, the lateral growth velocities of the less inclined {20-21} and {11-22} facets are approaching to the velocity of {10-11} facet under high temperature, so that the surface pit was transformed from a triangular shape to a pentagonal one. For c-plane GaN, the size of the surface pit produced by screw dislocation is determined by the lateral growth of the pit facets. A slow lateral growth rate of the inclined facets {10-11} compared with the vertical growth rate of (0001) facet under low VIII ratio would enlarge the pit size. For (11-22) semipolar GaN, surface pit is rarely observed, because the vertical growth velocity of {11-22} plane is slow compared with the lateral growth rate of the inclined facets, such as {11-20} and (0001).
Keyword:
Reprint Author's Address:
Email:
Source :
MATERIALS SCIENCE-MEDZIAGOTYRA
ISSN: 1392-1320
Year: 2016
Issue: 2
Volume: 22
Page: 223-227
1 . 0 0 0
JCR@2022
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:305
CAS Journal Grade:4
Cited Count:
WoS CC Cited Count: 2
SCOPUS Cited Count: 2
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: