• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Wang, Lulu (Wang, Lulu.) | Guo, Hang (Guo, Hang.) (Scholars:郭航) | Ye, Fang (Ye, Fang.) | Ma, Chongfang (Ma, Chongfang.)

Indexed by:

Scopus SCIE

Abstract:

A two-dimensional, single-phase, isothermal, multicomponent, transient model is built to investigate the transport phenomena in unitized regenerative fuel cells (URFCs) under the condition of switching from the fuel cell (FC) mode to the water electrolysis (WE) mode. The model is coupled with an electrochemical reaction. The proton exchange membrane (PEM) is selected as the solid electrolyte of the URFC. The work is motivated by the need to elucidate the complex mass transfer and electrochemical process under operation mode switching in order to improve the performance of PEM URFC. A set of governing equations, including conservation of mass, momentum, species, and charge, are considered. These equations are solved by the finite element method. The simulation results indicate the distributions of hydrogen, oxygen, water mass fraction, and electrolyte potential response to the transient phenomena via saltation under operation mode switching. The hydrogen mass fraction gradients are smaller than the oxygen mass fraction gradients. The average mass fractions of the reactants (oxygen and hydrogen) and product (water) exhibit evident differences between each layer in the steady state of the FC mode. By contrast, the average mass fractions of the reactant (water) and products (oxygen and hydrogen) exhibit only slight differences between each layer in the steady state of the WE mode. Under either the FC mode or the WE mode, the duration of the transient state is only approximately 0.2 s.

Keyword:

regenerative fuel cell transport phenomenon operation mode switching numerical simulation two-dimensional

Author Community:

  • [ 1 ] [Wang, Lulu]Beijing Univ Technol, Key Lab Enhanced Heat Transfer & Energy Conservat, Minist Educ, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Guo, Hang]Beijing Univ Technol, Key Lab Enhanced Heat Transfer & Energy Conservat, Minist Educ, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Ye, Fang]Beijing Univ Technol, Key Lab Enhanced Heat Transfer & Energy Conservat, Minist Educ, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
  • [ 4 ] [Ma, Chongfang]Beijing Univ Technol, Key Lab Enhanced Heat Transfer & Energy Conservat, Minist Educ, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
  • [ 5 ] [Wang, Lulu]Beijing Univ Technol, Beijing Key Lab Heat Transfer & Energy Convers, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
  • [ 6 ] [Guo, Hang]Beijing Univ Technol, Beijing Key Lab Heat Transfer & Energy Convers, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
  • [ 7 ] [Ye, Fang]Beijing Univ Technol, Beijing Key Lab Heat Transfer & Energy Convers, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
  • [ 8 ] [Ma, Chongfang]Beijing Univ Technol, Beijing Key Lab Heat Transfer & Energy Convers, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
  • [ 9 ] [Guo, Hang]Collaborat Innovat Ctr Elect Vehicles Beijing, Beijing 100081, Peoples R China

Reprint Author's Address:

  • 郭航

    [Guo, Hang]Beijing Univ Technol, Key Lab Enhanced Heat Transfer & Energy Conservat, Minist Educ, Coll Environm & Energy Engn, Beijing 100124, Peoples R China;;[Guo, Hang]Beijing Univ Technol, Beijing Key Lab Heat Transfer & Energy Convers, Coll Environm & Energy Engn, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Source :

ENERGIES

ISSN: 1996-1073

Year: 2016

Issue: 1

Volume: 9

3 . 2 0 0

JCR@2022

ESI Discipline: ENGINEERING;

ESI HC Threshold:166

CAS Journal Grade:4

Cited Count:

WoS CC Cited Count: 11

SCOPUS Cited Count: 26

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 6

Online/Total:386/10592837
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.