Indexed by:
Abstract:
对传统BP神经网络模糊逻辑的智能轮椅避障方法在训练过程中存在的过拟合和避障路径不够优化的问题,提出了一种模糊贝叶斯网络避障算法以降低神经网络的复杂度;该算法利用模糊神经网络对隶属度函数的参数进行自主学习调整,同时为增强神经网络的泛化能力和计算能力,在网络目标函数中加入权衰减项,利用贝叶斯原理优化神经网络的结构和权值;仿真和实机实验表明,该算法在训练结果和避障效果上均优于传统BP神经网络,提高了智能轮椅避障的实时性,优化了避障路径,可满足用户对智能轮椅安全性和舒适性的需求.
Keyword:
Reprint Author's Address:
Email:
Source :
计算机测量与控制
ISSN: 1671-4598
Year: 2016
Issue: 5
Volume: 24
Page: 153-155,159
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: 4
Chinese Cited Count:
30 Days PV: 20
Affiliated Colleges: