Indexed by:
Abstract:
针对传统的基于模糊逻辑的智能轮椅避障方法参数选取依赖设计者经验的问题,提出了一种能够自主学习的模糊神经网络智能轮椅避障控制算法.该算法结合模糊逻辑和神经网络各自的优点,并采用状态控制变量记录全向轮椅的运动状态,解决使用者期望目标方向和轮椅避障方向的选择问题,优化了避障路径,更好地满足用户对智能轮椅的舒适性需求.仿真和实物实验证明:该算法提高了避障的智能性和使用者的乘用舒适性,适用于智能轮椅的避障控制.
Keyword:
Reprint Author's Address:
Email:
Source :
华中科技大学学报(自然科学版)
ISSN: 1671-4512
Year: 2013
Issue: 5
Volume: 41
Page: 77-81
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: 10
Chinese Cited Count:
30 Days PV: 19
Affiliated Colleges: