Indexed by:
Abstract:
According to the structure characteristics of the non-uniform beam bridge, a practical model for calculating the vibration equation of the non-uniform beam bridge is given and the application scope of the model includes not only the beam bridge structure but also the non-uniform beam with added masses and elastic supports. Based on the Bernoulli-Euler beam theory, extending the application of the modal perturbation method and establishment of a semi-analytical method for solving the vibration equation of the non-uniform beam with added masses and elastic supports based is able to be made. In the modal subspace of the uniform beam with the elastic supports, the variable coefficient differential equation that describes the dynamic behavior of the non-uniform beam is converted to nonlinear algebraic equations. Extending the application of the modal perturbation method is suitable for solving the vibration equation of the simply supported and continuous non-uniform beam with its arbitrary added masses and elastic supports. The examples, that are analyzed, demonstrate the high precision and fast convergence speed of the method. Further study of the timesaving method for the dynamic characteristics of symmetrical beam and the symmetry of mode shape should be developed. Eventually, the effects of elastic supports and added masses on dynamic characteristics of the three-span non-uniform beam bridge are reported.
Keyword:
Reprint Author's Address:
Source :
STRUCTURAL ENGINEERING AND MECHANICS
ISSN: 1225-4568
Year: 2014
Issue: 5
Volume: 52
Page: 997-1017
2 . 2 0 0
JCR@2022
ESI Discipline: ENGINEERING;
ESI HC Threshold:176
JCR Journal Grade:3
CAS Journal Grade:4
Cited Count:
WoS CC Cited Count: 4
SCOPUS Cited Count: 5
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: