• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

曾诗鸿 (曾诗鸿.) (Scholars:曾诗鸿) | 王芳 (王芳.)

Indexed by:

CQVIP PKU CSSCI

Abstract:

本文在介绍信用风险度量KMV模型后,根据一定的条件选取42家中国制造业上市公司数据,在对KMV模型的适用性验证的同时,利用ST和*ST公司的财务数据对违约点进行修正,实证分析表明,采用新违约点的KMV模型在中国的适用性和准确性都有所提高.由此得出基于我国证券市场发展的实际情况和行业特性,对KMV模型进行针对性的修正具有实践意义.

Keyword:

KMV模型 违约距离 信用风险

Author Community:

  • [ 1 ] [曾诗鸿]北京工业大学
  • [ 2 ] [王芳]北京工业大学

Reprint Author's Address:

Email:

Show more details

Related Keywords:

Source :

预测

ISSN: 1003-5192

Year: 2013

Issue: 2

Volume: 32

Page: 60-63,69

Cited Count:

WoS CC Cited Count: 0

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count: 109

Chinese Cited Count:

30 Days PV: 20

Online/Total:225/10507651
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.