Indexed by:
Abstract:
Neutron-diffraction and magnetization measurements have been carried out on a series of samples of the magnetorefrigerant Mn1+yFe1-yP1-xGex. The data reveal that the ferromagnetic and paramagnetic phases correspond to two very distinct crystal structures, with the magnetic-entropy change as a function of magnetic field or temperature being directly controlled by the phase fraction of this first-order transition. By tuning the physical properties of this system we have achieved a magnetic-entropy change [magnetocaloric effect (MCE)] for the composition Mn1.1Fe0.9P0.80Ge0.20 that has a similar shape for both increasing and decreasing field, with the maximum MCE exceeding 74 J/kg K-substantially higher than the previous record. The diffraction results also reveal that there is a substantial variation in the Ge content in the samples which causes a distribution of transition temperatures that reduces the MCE. It therefore should be possible to improve the MCE to exceed 100 J/kg K under optimal conditions.
Keyword:
Reprint Author's Address:
Email:
Source :
PHYSICAL REVIEW B
ISSN: 1098-0121
Year: 2009
Issue: 1
Volume: 79
3 . 7 0 0
JCR@2022
ESI Discipline: PHYSICS;
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 62
SCOPUS Cited Count: 72
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 7
Affiliated Colleges: