Indexed by:
Abstract:
A photonic microwave down-conversion approach is proposed and experimentally demonstrated based on a Mach-Zehnder modulator paralleled with a phase modulator. The incident radio frequency signal and the local oscillator signal are feed to the MZM and PM, respectively, and these two modulated optical signals interfere in the coupler. The useless higherorder sidebands are removed by a tunable optical band-pass filter. The principle of microwave frequency down-conversion is analyzed theoretically, the MZM and PM paralleled frequency down-conversion system is built. Then the performance of system is tested, and the experimental results show that the spurious-free dynamic range achieves 104.8 dB u Hz2/3. Compared to the conventional MZM-MZM cascaded system, the SFDR has been improved by 16 dB. The MZM and PM paralleled frequency down-conversion system can balance the intensity of the two coherent beams easily, and only single DC bias is needed. The proposed method possesses simple structure and high dynamic range.
Keyword:
Reprint Author's Address:
Email:
Source :
INTERNATIONAL CONFERENCE ON OPTOELECTRONICS AND MICROELECTRONICS TECHNOLOGY AND APPLICATION
ISSN: 0277-786X
Year: 2017
Volume: 10244
Language: English
Cited Count:
WoS CC Cited Count: 1
SCOPUS Cited Count: 3
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 8
Affiliated Colleges: