Indexed by:
Abstract:
The fabrication of effective microchip liquid chromatography (LC) systems tends to be limited by the availability of suitable chromatographic columns. Herein, we developed a glass microchip LC system in which porous single-particle silica was adopted as frits and a freeze-thaw valve was utilized to achieve sample injection without interfering with sampling. The fabrication of single-particle-frit-based packed columns did not require an additional packing channel, thus avoiding dead volumes within the channel interface that can influence chromatographic separation. Further, the length of the packed column could be adjusted using the location of single-particle frits within the column channel. The fabricated frits exhibited high mechanical strength, good permeability, and tolerance for high pressures during chromatographic separation. In particular, the developed microchip LC system was able to withstand high separation pressures of more than 5000 psi. The microchip LC system was applied to the separation of neurotransmitters. Three different monoamine neurotransmitters were completely separated within 5 min with theoretical plate numbers on the order of 100,000 plates m(-1). The microchip LC system has a potential for application in a variety of fields including environmental analysis, food safety, drug analysis, and biomedicine.
Keyword:
Reprint Author's Address:
Email:
Source :
TALANTA
ISSN: 0039-9140
Year: 2020
Volume: 215
6 . 1 0 0
JCR@2022
ESI Discipline: CHEMISTRY;
ESI HC Threshold:139
Cited Count:
WoS CC Cited Count: 9
SCOPUS Cited Count: 10
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 6
Affiliated Colleges: