Indexed by:
Abstract:
A novel process that combines partial nitrification, fermentation and Anammox-partial denitrification (NFAD) was proposed to co-treat ammonia rich sludge supernatant (NH4+-N = 1194.1 mg/L), external WAS (MLSS = 22092.6 mg/L) and WWTP secondary effluent (NO3--N = 58.6 mg/L). Three separated reactors were used for partial nitrification (PN-SBR), integrated fermentation and denitrification (IFD-SBR) and combined Anammox-partial denitrification (AD-UASB), respectively. The process resulted in excellent nitrogen removal efficiency (NRE) of 98.7%, external sludge reduction efficiency (SRE) of 44.6% and external sludge reduction rate of 4.1 kg/m3 after 200 days of continuous operation. IFD-SBR and AD-UASB contributed towards 89.4% and 9.2% nitrogen removal, respectively. In AD-UASB, cooperation between Anammox bacteria (4.1% Candidatus Brocadia) and partial denitrifying bacteria (3.2% Thauera) resulted in significant stability of Anammox pathway, which contributed up to 84.1% nitrogen removal in the combined Anammox-partial denitrification process. NFAD saved up to 100% organic resource demand and 25% of aeration consumption compared with the traditional nitrification-denitrification process.
Keyword:
Reprint Author's Address:
Email:
Source :
BIORESOURCE TECHNOLOGY
ISSN: 0960-8524
Year: 2021
Volume: 337
1 1 . 4 0 0
JCR@2022
ESI Discipline: BIOLOGY & BIOCHEMISTRY;
ESI HC Threshold:84
JCR Journal Grade:1
Cited Count:
WoS CC Cited Count: 16
SCOPUS Cited Count: 21
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: