• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Jin, Liu (Jin, Liu.) (Scholars:金浏) | Li, Xiaoya (Li, Xiaoya.) | Zhang, Renbo (Zhang, Renbo.) | Du, Xiuli (Du, Xiuli.) (Scholars:杜修力)

Indexed by:

EI Scopus SCIE

Abstract:

Fire accidents will cause deterioration of the mechanical properties of steel and concrete, which will affect the bond-slip behavior of the interface between steel and concrete. In this work, in order to further understand the relationship between bonding performance of reinforced concrete and temperature, a central pull-out test by the three-dimensional (3D) mesoscale numerical model was established. The surface shape of deformed rebar and the heterogeneity of concrete were considered in the model. The effectiveness of the mesoscale model was verified against with the available test results. Moreover, the bond failure mechanism between deformed rebar and concrete was discussed. Subsequently, the influence of thickness to diameter ratio, elevated temperature and cooling down on the bonding behavior was discussed using the mesoscale numerical model. The results show that the failure mode and the bond stress-slip curve of the specimen are obviously related to the ratio of thickness to diameter. The bond strength, slip and bond stress-slip curve of the specimen at high temperature are significantly different from those after cooling down according to the experimental and numerical results. The influence of temperature on bond strength is greater than that on slip. Finally, on the basis of the existing theoretical model of bonding behavior at room temperature, a calculation method that can predict the bond stress-slip curve at elevated constant temperature is proposed. The calculation results are compared with the simulation and test results to illustrate the validity of the prediction formula.

Keyword:

Bond behavior Deformed rebar Concrete Mesoscale modelling At elevated temperature

Author Community:

  • [ 1 ] [Jin, Liu]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing, Peoples R China
  • [ 2 ] [Li, Xiaoya]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing, Peoples R China
  • [ 3 ] [Zhang, Renbo]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing, Peoples R China
  • [ 4 ] [Du, Xiuli]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing, Peoples R China

Reprint Author's Address:

  • 张仁波

    [Zhang, Renbo]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing, Peoples R China

Show more details

Related Keywords:

Source :

INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES

ISSN: 0020-7403

Year: 2021

Volume: 205

7 . 3 0 0

JCR@2022

ESI Discipline: ENGINEERING;

ESI HC Threshold:87

JCR Journal Grade:1

Cited Count:

WoS CC Cited Count: 41

SCOPUS Cited Count: 42

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 7

Online/Total:704/10590083
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.