Indexed by:
Abstract:
Two-dimensional layered transition metal dichalcogenides (TMDCs) have demonstrated a huge potential in the broad fields of optoelectronic devices, logic electronics, electronic integration, as well as neural networks. To take full advantage of TMDC characteristics and efficiently design the device structures, one of the most key processes is to control their p-In-type modulation. In this review, we summarize the p-/n-type modulation of TMDCs based on diverse strategies consisting of intrinsic defect tailoring, substitutional doping, surface charge transfer, chemical intercalation, electrostatic modulation, and dielectric interface engineering. The modulation mechanisms and comparisons of these strategies are analyzed together with a discussion of their corresponding device applications in electronics and optoelectronics. Finally, challenges and outlooks for p-/n-type modulation of TMDCs are presented to provide references for future studies.
Keyword:
Reprint Author's Address:
Email:
Source :
NANO RESEARCH
ISSN: 1998-0124
Year: 2021
Issue: 1
Volume: 15
Page: 123-144
9 . 9 0 0
JCR@2022
ESI Discipline: PHYSICS;
ESI HC Threshold:72
JCR Journal Grade:1
Cited Count:
WoS CC Cited Count: 20
SCOPUS Cited Count: 21
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 8
Affiliated Colleges: