Indexed by:
Abstract:
2Cr13 thin-wall part was additively deposited by robotic cold metal transfer (CMT) tech-nology, and two traditionally manufactured counterparts in annealing (as-Aed) and quenching & tempering (as-QTed) conditions were adopted as comparison. The results show that only a strong texturing corresponding to alpha-Fe phase was detected for the wire-arc additively manufactured (WAAM) part, indicating an austenite-free structure. As-deposited microstructure was consisted of martensite laths and ferrite matrix, along with irregular delta-ferrite precipitation. The martensitic growth direction was non-oriented in the X-Y plane, but primarily parallel to the depositing direction in the X-Z and Y-Z planes along the maximum thermal gradient. Both nanohardness and ultimate tensile strength (UTS) for each WAAM sample were enhanced when compared with the as-Aed BM, while poorer than that of the as-QTed BM. Such mechanical evolution was a result of the intrinsic micro-structural features, whereas the similar elastic modulus properties were mainly attributed to the similar 2Cr13 atomic bonding. A ductile tensile fracture behavior was dominant in the X-Z plane, while a mixed mode of ductile and brittle fracture occurred in the X-Y and Y-Z planes. The findings above reveal an isotropy in mechanical properties despite a slightly microstructural discrepancy in different planes for the as-deposited 2Cr13 WAAM part. (C) 2021 The Authors. Published by Elsevier B.V.
Keyword:
Reprint Author's Address:
Source :
JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T
ISSN: 2238-7854
Year: 2021
Volume: 13
Page: 1767-1778
6 . 4 0 0
JCR@2022
JCR Journal Grade:1
Cited Count:
WoS CC Cited Count: 22
SCOPUS Cited Count: 23
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: