Indexed by:
Abstract:
高效视频编码(HEVC)标准相对于H.264/AVC标准提升了压缩效率,但由于引入的编码单元四叉树划分结构也使得编码复杂度大幅度提升.对此,该文提出一种针对HEVC帧内编码模式下编码单元(CU)划分表征矢量预测的多层特征传递卷积神经网络(MLFT-CNN),大幅度降低了视频编码复杂度.首先,提出融合CU划分结构信息的降分辨率特征提取模块;其次,改进通道注意力机制以提升特征的纹理表达性能;再次,设计特征传递机制,用高深度编码单元划分特征指导低深度编码单元的划分;最后建立分段特征表示的目标损失函数,训练端到端的CU划分表征矢量预测网络.实验结果表明,在不影响视频编码质量的前提下,该文所提算法有效地降低了HEVC的编码复杂度,与标准方法相比,编码复杂度平均下降了70.96%.
Keyword:
Reprint Author's Address:
Email:
Source :
电子与信息学报
ISSN: 1009-5896
Year: 2021
Issue: 7
Volume: 43
Page: 2023-2031
Cited Count:
SCOPUS Cited Count: 3
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 8
Affiliated Colleges: