Abstract:
针对现有压缩视频质量增强算法未能充分利用压缩视频特点的问题,研究了视频编码与压缩视频质量增强任务之间的本质关系,并针对性地设计了一种基于三维卷积神经网络(3D convolutional neural network,3D-CNN)的非对齐压缩视频质量增强算法。实验结果表明:相较于高效视频编码(high efficiency video coding,HEVC)标准H.265,所提算法在低延迟(low delay,LD)配置下且量化参数(quantization parameter,QP)为37时,峰值信噪比(peak signal-to-noise ratio,PSNR)提升了0.465 2 dB;相较于数据压缩会议(data compression conference,DCC)中提出的多帧视频质量增强方法(multi-frame guided attention network,MGANet),该算法PSNR的增长量提升了15.1%。
Keyword:
Reprint Author's Address:
Email:
Source :
北京工业大学学报
Year: 2024
Issue: 09
Page: 1-8
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 7
Affiliated Colleges: