Indexed by:
Abstract:
Extensive experimental and theoretical studies of large rupture strain (LRS) fiber-reinforced polymer (FRP)-confined concrete columns have been conducted based on small-scale columns, mostly with a diameter of 150 mm. This paper presents the first-ever study on the axial performance of LRS polyethylene terephthalate (PET) and polyethylene naphthalate (PEN) FRP-confined large-scale concrete columns. Twenty PET FRP-confined circular concrete columns and 20 PEN FRP-confined square concrete columns were loaded concentrically. The cross-sectional diameter or side length ranged from 100 to 400 mm. The effects of specimen size and FRP volume ratio on the failure mode, axial stress-strain relationship, and dilation behavior were investigated. The load-carrying capacity and ductility of LRS FRP-confined concrete increased with an increase of the FRP volume ratio. As the specimen size increased, the confinement efficiency of the FRP decreased, resulting in a lower strength enhancement. The accuracy of existing size-dependent strength models was also evaluated using the residual error. Furthermore, a modified size-dependent model for LRS FRP-confined circular/square concrete columns was developed, which was shown to have a more satisfactory performance than the existing models. The proposed model can serve as a basic model for the seismic analysis of strengthened reinforced concrete (RC) columns with LRS FRP, with the possible size effect duly accounted.
Keyword:
Reprint Author's Address:
Source :
JOURNAL OF COMPOSITES FOR CONSTRUCTION
ISSN: 1090-0268
Year: 2022
Issue: 4
Volume: 26
4 . 6
JCR@2022
4 . 6 0 0
JCR@2022
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:66
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 8
SCOPUS Cited Count: 13
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 5
Affiliated Colleges: