Indexed by:
Abstract:
The complex relationships between the molecular composition of dissolved organic matter (DOM) and microbial communities are essential for maintaining the stability of aquatic ecosystems. This study comprehensively analyzed the characteristics and potential effects of DOM molecular composition as well as the relationship between microbial communities and DOM molecular composition in sediments from the Beiyun River, Beijing, China. The results showed that the content of DOM in Beiyun River sediments was 9.93-41.57 g/kg, mainly composed of lignin-like (36.75%) and protein-like (17.79%) substances. Compared with other rivers affected by anthropogenic activities, the higher content of labile substances in the Beiyun River increased the risk of nutrient release. At the same time, 1402 molecules remained stable in each sample, most of which were refractory lignin-like substances and protein-like substances carrying ester groups. The agricultural section contained more common DOM molecules than the urban section, mainly tannin-like and lignin-like substances with unsaturated or cyclic structures. And, the intensity of anthropogenic activities was the main reason affecting the diversity of unique DOM molecular in each sample. Moreover, Dechloromonas as the dominant genus of Proteobacteria was closely related to the biological modification of low unsaturated (DBE < 15) condensed aromatic compounds (P < 0.05). Anaerolineaceae and Anaerolineae belonging to the Chloroflexi phylum have the potential to degrade medium and high molecular weight (M/Z> 400) liable substances (P < 0.05) and release lignin-like substances. In addition, the proportion of protein-like substances can indirectly reflect the risk of nutrient release in sediments affected by urbanization. Thus, the results of this study further reveal the impact of urbanization on rivers, and provide theoretical basis and guidance for pollution control of the Beiyun River and other urbanized rivers worldwide.
Keyword:
Reprint Author's Address:
Email:
Source :
SCIENCE OF THE TOTAL ENVIRONMENT
ISSN: 0048-9697
Year: 2022
Volume: 827
9 . 8
JCR@2022
9 . 8 0 0
JCR@2022
ESI Discipline: ENVIRONMENT/ECOLOGY;
ESI HC Threshold:47
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 26
SCOPUS Cited Count: 27
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 11
Affiliated Colleges: