Indexed by:
Abstract:
Enhanced oxidation resistance is a primary demand for the application of refractory high-entropy alloys (RHEAs) at elevated temperatures. In this study, Al was added to a Ti2VZrNb RHEA to partially substitute Nb to improve its oxidation resistance and mechanical properties. The alloy was found to have an increased oxidation resistance by forming a continuous Al2O3 + ZrO2 oxide protective surface. At the same time, the room-temperature yield strength was also increased by 66% to 1273 MPa via solid solution strengthening. The low atomic mass of Al also helped to reduce the density of the alloy by 8.2% to 5.44 g cm(-3). This resulted in a high specific yield strength of 234 MPa cm(3) g(-1) for the alloy. Meanwhile, the Ti2VZrNb0.5Al0.5 alloy also exhibited a high compressive plasticity of >50%. These values are among the best reported so far for RHEAs.
Keyword:
Reprint Author's Address:
Source :
SCIENCE CHINA-MATERIALS
ISSN: 2095-8226
Year: 2022
Issue: 10
Volume: 65
Page: 2842-2849
8 . 1
JCR@2022
8 . 1 0 0
JCR@2022
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:66
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 13
SCOPUS Cited Count: 18
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 4
Affiliated Colleges: