Indexed by:
Abstract:
The dynamic description of neural networks has attracted the attention of researchers for dynamic networks may carry more information compared with resting-state networks. As a non-invasive electrophysiological data with high temporal and spatial resolution, magnetoencephalogram (MEG) can provide rich information for the analysis of dynamic functional brain networks. In this review, the development of MEG brain network was summarized. Several analysis methods such as sliding window, Hidden Markov model, and time-frequency based methods used in MEG dynamic brain network studies were discussed. Finally, the current research about multi-modal brain network analysis and their applications with MEG neurophysiology, which are prospected to be one of the research directions in the future, were concluded.
Keyword:
Reprint Author's Address:
Email:
Source :
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART H-JOURNAL OF ENGINEERING IN MEDICINE
ISSN: 0954-4119
Year: 2022
Issue: 6
Volume: 236
Page: 763-774
1 . 8
JCR@2022
1 . 8 0 0
JCR@2022
ESI Discipline: ENGINEERING;
ESI HC Threshold:49
JCR Journal Grade:4
CAS Journal Grade:4
Cited Count:
WoS CC Cited Count: 2
SCOPUS Cited Count: 2
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: