Indexed by:
Abstract:
Homogeneous noble metal catalysts used in alkene hydrosilylation reactions to manufacture organosilicon compounds commercially often suffer from difficulties in catalyst recovering and recycling, undesired disproportionation reactions, and energy-intensive purification of products. Herein, we report a heterogeneous 0.5Ru(delta+)/ZrO2 catalyst with partially charged single-atom Ru (0.5 wt.% Ru) supported on commercial ZrO2 nanocrystals synthesized by the simple impregnation method followed by H-2 reduction. When used in the ethylene hydrosilylation with triethoxysilane to produce the desired ethyltriethoxysilane, 0.5Ru(delta+)/ZrO2 showed excellent catalytic performance with the maximum Ru atom utilization and good recyclability, even superior to homogeneous catalyst (RuCl3 center dot H2O). Structural characterizations and density functional theory calculations reveal the atomic dispersion of the active Ru species and their unique electronic properties distinct from the homogeneous catalyst. The reaction route over this catalyst is supposed to follow the typical Chalk-Harrod mechanism. This highly efficient and supported single-atom Ru catalyst has the potential to replace the current homogeneous catalyst for a greener hydrosilylation industry.
Keyword:
Reprint Author's Address:
Email:
Source :
NANO RESEARCH
ISSN: 1998-0124
Year: 2022
Issue: 7
Volume: 15
Page: 5857-5864
9 . 9
JCR@2022
9 . 9 0 0
JCR@2022
ESI Discipline: PHYSICS;
ESI HC Threshold:41
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 12
SCOPUS Cited Count: 12
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 6
Affiliated Colleges: