• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Sun, Bin (Sun, Bin.) | Wang, Shaofan (Wang, Shaofan.) | Kong, Dehui (Kong, Dehui.) (Scholars:孔德慧) | Wang, Lichun (Wang, Lichun.) | Yin, Baocai (Yin, Baocai.)

Indexed by:

EI Scopus SCIE

Abstract:

3-D action recognition is referred to as the classification of action sequences which consist of 3-D skeleton joints. While many research works are devoted to 3-D action recognition, it mainly suffers from three problems: 1) highly complicated articulation; 2) a great amount of noise; and 3) low implementation efficiency. To tackle all these problems, we propose a real-time 3-D action-recognition framework by integrating the locally aggregated kinematic-guided skeletonlet (LAKS) with a supervised hashing-by-analysis (SHA) model. We first define the skeletonlet as a few combinations of joint offsets grouped in terms of the kinematic principle and then represent an action sequence using LAKS, which consists of a denoising phase and a locally aggregating phase. The denoising phase detects the noisy action data and adjusts it by replacing all the features within it with the features of the corresponding previous frame, while the locally aggregating phase sums the difference between an offset feature of the skeletonlet and its cluster center together over all the offset features of the sequence. Finally, the SHA model combines sparse representation with a hashing model, aiming at promoting the recognition accuracy while maintaining high efficiency. Experimental results on MSRAction3D, UTKinectAction3D, and Florence3DAction datasets demonstrate that the proposed method outperforms state-of-the-art methods in both recognition accuracy and implementation efficiency.

Keyword:

Joints skeletonlet sparse representation skeleton joints Solid modeling Feature extraction Computational modeling Kinematics Action recognition Real-time systems hashing Analytical models

Author Community:

  • [ 1 ] [Sun, Bin]Beijing Univ Technol, Fac Informat Technol, Beijing Inst Artificial Intelligence, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 2 ] [Wang, Shaofan]Beijing Univ Technol, Fac Informat Technol, Beijing Inst Artificial Intelligence, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 3 ] [Kong, Dehui]Beijing Univ Technol, Fac Informat Technol, Beijing Inst Artificial Intelligence, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 4 ] [Wang, Lichun]Beijing Univ Technol, Fac Informat Technol, Beijing Inst Artificial Intelligence, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 5 ] [Yin, Baocai]Beijing Univ Technol, Fac Informat Technol, Beijing Inst Artificial Intelligence, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 6 ] [Sun, Bin]UBTECH, Beijing Res Inst, Beijing 100089, Peoples R China

Reprint Author's Address:

Show more details

Related Keywords:

Related Article:

Source :

IEEE TRANSACTIONS ON CYBERNETICS

ISSN: 2168-2267

Year: 2021

Issue: 6

Volume: 52

Page: 4837-4849

1 1 . 8 0 0

JCR@2022

ESI Discipline: COMPUTER SCIENCE;

ESI HC Threshold:87

JCR Journal Grade:1

Cited Count:

WoS CC Cited Count: 6

SCOPUS Cited Count: 7

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 6

Affiliated Colleges:

Online/Total:369/10601380
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.