Abstract:
针对冷水机组产生的故障数据不足,数据集中正常数据和故障数据数量不平衡,进而导致故障诊断精度下降的问题,提出一种基于中心损失的条件生成式对抗网络(central loss conditional generative adversarial network,CLCGAN)和支持向量机(support vector machine,SVM)的故障诊断方法。首先,CLCGAN利用少量真实故障数据生成新的故障数据;然后,将生成的故障数据与初始数据集混合,使正常数据与故障数据的数量达到平衡;最后,利用平衡数据集构建SVM模型进行故障诊断。在GAN生成冷水机组故障数据时,构建动态中心损失项并加入到目标函数...
Keyword:
Reprint Author's Address:
Email:
Source :
化工学报
Year: 2022
Issue: 09
Volume: 73
Page: 3950-3962
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 9
Affiliated Colleges: