• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Chang, Mengmeng (Chang, Mengmeng.) | Ding, Zhiming (Ding, Zhiming.) (Scholars:丁治明) | Guo, Limin (Guo, Limin.) | Zhao, Zilin (Zhao, Zilin.)

Indexed by:

Scopus SCIE

Abstract:

With the continuous enrichment of traffic Internet-of-Things data acquisition methods, more and more spatiotemporal data on road networks is collected in real time by various sensors and multimedia devices. The data-driven deep learning approach can make full use of real-time data from a road network to predict future traffic status. By mining the spatiotemporal relationships between road units, the ability to predict network evolutionary behaviors is improved, which provides a new method of traffic management. There are strong semantic relations between road intersections or road sections in terms of traffic evolution. Modeling the network only from a shallow spatial topological perspective ignores the important intrinsic association of the dynamic network. In this paper, we propose a semantic associative neural network (SANN) for traffic evolution analysis by modeling the propagation effects and similarity patterns between road units. Considering the inadequacy of the fixed adjacent matrix, graph convolution is used to encode the semantic features of a road network and embed them in a bidirectional recurrent neural network for sequence prediction. Finally, the experiments are conducted based on speed data sets to prove the effectiveness of the proposed method. The model achieved a well-predicted accuracy of 95.33% and 84.08% on Pems-Bay and Los Angeles data sets.

Keyword:

Traffic prediction Traffic evolution Semantic features Dynamic similarity Spatiotemporal neural network

Author Community:

  • [ 1 ] [Chang, Mengmeng]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Ding, Zhiming]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Guo, Limin]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Zhao, Zilin]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Ding, Zhiming]Chinese Acad Sci, Inst Software, Beijing 100190, Peoples R China

Reprint Author's Address:

  • [Guo, Limin]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China;;

Show more details

Related Keywords:

Related Article:

Source :

JOURNAL OF TRANSPORTATION ENGINEERING PART A-SYSTEMS

ISSN: 2473-2907

Year: 2023

Issue: 2

Volume: 149

2 . 1 0 0

JCR@2022

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 9

Affiliated Colleges:

Online/Total:515/10796831
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.