• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Wu, S. (Wu, S..) | Wu, D. (Wu, D..) | Peng, R. (Peng, R..)

Indexed by:

EI Scopus SCIE

Abstract:

Greenhouse gases (GHG) from human activities are the main contributor to climate change since the mid-20th century. Reducing the release of GHG emissions is becoming a thematic research topic in many research disciplines. In the reliability research community, there are research papers relating to reliability and maintenance for systems in power generation farms such as offshore farms. Nevertheless, there is sparse research that aims to optimise maintenance policies for reducing the GHG emissions from systems such as automotive vehicles or building service systems. To fill up this gap, this paper optimises replacement policies for systems that age and degrade and that produce GHG emissions (i.e., exhaust emissions) including the initial manufacturing GHG emissions produced during the manufacturing stage and the emissions generated during the operational stage. Both the exhaust emissions process and the failure process are considered as functions of two time scales (i.e., age and accumulated usage), respectively. Other factors that may affect the two processes such as ambient temperature and road conditions are depicted as random effects. Under these settings, the decision problem is a nonlinear programming problem subject to several constraints. Replacement policies are then developed. Numerical examples are provided to illustrate the proposed methods. © 2022 The Author(s)

Keyword:

Integer nonlinear programming Two time scales Greenhouse gas emissions Condition-based monitoring Maintenance policy

Author Community:

  • [ 1 ] [Wu S.]Kent Business School, University of Kent, Canterbury, Kent, CT2 7PE, United Kingdom
  • [ 2 ] [Wu D.]School of Management, Xi'an Jiaotong University, Xian, China
  • [ 3 ] [Peng R.]School of Economics and Management, Beijing University of Technology, Beijing, 100124, China

Reprint Author's Address:

Email:

Show more details

Related Keywords:

Source :

European Journal of Operational Research

ISSN: 0377-2217

Year: 2023

Issue: 3

Volume: 307

Page: 1135-1145

6 . 4 0 0

JCR@2022

ESI Discipline: ENGINEERING;

ESI HC Threshold:19

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count: 6

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 5

Affiliated Colleges:

Online/Total:1133/10613871
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.