Indexed by:
Abstract:
Nanoplastics (NPs) are ubiquitously present in wastewater treatment plants, which would be removed by the flocculation of extracellular polymeric substances (EPS) from activated sludge. However, the interaction mechanisms between NPs and EPS of activated sludge remain largely unexplored. This study investigated the interaction mechanisms between polystyrene nanoplastics (PS-NPs) and EPS with sodium acetate (NaAc), methanol (MeOH) and glucose (GLC) as carbon sources. The results showed that the functional group involved in the interactions between PS-NPs and EPS was the carbonyl of protein amide I region. The interaction between PS-NPs and EPS increased the β-sheets content, decreased the ratio of α-helix to (β-sheet + random coil), and changed the protein secondary structures to strong rigidity. This enhanced the flocculation of activated sludge cultivated by these three carbon sources. The flocculation between PS-NPs and EPS in activated sludge using NaAc as the carbon source was the strongest among these three carbon sources. Therefore, the degree of flocculation between NPs and EPS of activated sludge in wastewater treatment plants varies with carbon sources. This work provides a reference for the NPs removal mechanisms from wastewater, which will help to understand the migration behavior of MPs and NPs in wastewater treatment processes. © 2022 Elsevier Ltd
Keyword:
Reprint Author's Address:
Email:
Source :
Chemosphere
ISSN: 0045-6535
Year: 2023
Volume: 314
8 . 8 0 0
JCR@2022
ESI Discipline: ENVIRONMENT/ECOLOGY;
ESI HC Threshold:17
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 13
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 7
Affiliated Colleges: