• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Wang, XiaoTong (Wang, XiaoTong.) | Yang, Hong (Yang, Hong.) (Scholars:杨宏) | Liu, XuYan (Liu, XuYan.) | Su, Yang (Su, Yang.)

Indexed by:

EI Scopus SCIE PubMed

Abstract:

In order to reduce the loss of anaerobic ammonia oxidation (anammox) sludge and stabilize the reaction microenvironment, polyvinyl alcohol - polypropylene (PVA-PP) was used to encapsulate anammox bacteria on a filler. The influence of different inoculation amounts (2, 4, 6 and 8%) on the overall nitrogen removal process was first compared and then the anammox characteristics of the immobilized filler under the influence of different environmental factors were evaluated through batch experiments. The results show that the biomass only affected the growth rate of the activity during the logarithmic phase, while the total nitrogen removal rate (NRR) tended to be similar after 99 d of culture. The NRR reached 1.83 kg.(m(3).d)(-1) on day 140, which was 9.4 times that of suspended sludge before encapsulation, and the structure of embedding filler was complete without shedding. Scanning electron microscopy (SEM) showed that the internal porous network structure formed channels and a large number of anammox bacteria were observed around. Microbial community analysis of the 16S rDNA gene showed that the diversity was maintained in the entrapped carrier. Furthermore, the effective enrichment of the anammox functional bacteria Candidatus Kuenenia (AF375995.1) increarsed from 11.06% to 32.55%. The PVA-PP immobilized filler fit well with the biological nitrogen removal kinetic model and could also achieve coupling of anammox and denitrification. The inhibition effect of the organic carbon source interference and starvation on anammox bacteria was significantly weakened. (C) 2019 Elsevier B.V. All rights reserved.

Keyword:

Immobilized filler Nitrogen removal Polyvinyl alcohol-polypropylene (PVA-PP) Anaerobic ammonia oxidation (anammox) Microbial community structure

Author Community:

  • [ 1 ] [Wang, XiaoTong]Beijing Univ Technol, Coll Architectural Engn, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China
  • [ 2 ] [Yang, Hong]Beijing Univ Technol, Coll Architectural Engn, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China
  • [ 3 ] [Liu, XuYan]Beijing Univ Technol, Coll Architectural Engn, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China
  • [ 4 ] [Su, Yang]Beijing Univ Technol, Coll Architectural Engn, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China

Reprint Author's Address:

  • 杨宏

    [Yang, Hong]Beijing Univ Technol, Coll Architectural Engn, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Source :

SCIENCE OF THE TOTAL ENVIRONMENT

ISSN: 0048-9697

Year: 2020

Volume: 710

9 . 8 0 0

JCR@2022

ESI Discipline: ENVIRONMENT/ECOLOGY;

ESI HC Threshold:138

Cited Count:

WoS CC Cited Count: 37

SCOPUS Cited Count: 39

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 12

Online/Total:318/10509812
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.