Indexed by:
Abstract:
We provide a theoretical study of the iterative hard thresholding with partially known support set (IHT-PKS) algorithm when used to solve the compressed sensing recovery problem. Recent work has shown that IHT-PKS performs better than the traditional IHT in reconstructing sparse or compressible signals. However, less work has been done on analyzing the performance guarantees of IHT-PKS. In this paper, we improve the current RIP-based bound of IHT-PKS algorithm from δ3s−2k<132≈0.1768 to δ3s−2k<5−14, where δ3s−2k is the restricted isometric constant of the measurement matrix. We also present the conditions for stable reconstruction using the IHTμ-PKS algorithm which is a general form of IHT-PKS. We further apply the algorithm on Least Squares Support Vector Machines (LS-SVM), which is one of the most popular tools for regression and classification learning but confronts the loss of sparsity problem. After the sparse representation of LS-SVM is presented by compressed sensing, we exploit the support of bias term in the LS-SVM model with the IHTμ-PKS algorithm. Experimental results on classification problems show that IHTμ-PKS outperforms other approaches to computing the sparse LS-SVM classifier. © 2023, Institute of Mathematics, Czech Academy of Sciences.
Keyword:
Reprint Author's Address:
Email:
Source :
Applications of Mathematics
ISSN: 0862-7940
Year: 2023
Issue: 5
Volume: 68
Page: 623-642
0 . 7 0 0
JCR@2022
ESI Discipline: MATHEMATICS;
ESI HC Threshold:9
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: