Indexed by:
Abstract:
The slow growth and difficulty in cultivating anammox bacteria limit the rapid start-up of anammox process and effective microbial enrichment. In this study, microbial electrolysis cell (MEC) was coupled with anammox to investigate the effects of different applying voltage methods on substrate removal efficiency and rates, microbial community structure, anammox metabolism and metabolic pathways. The results showed that applying voltage not only improved NH4+-N removal efficiency and removal rates, but also promoted electron transfer efficiency, key enzyme activity and extracellular polymeric substances (EPS) secretion in the systems. Step-up voltage was more conducive to the growth of Candidatus_Kuenenia in the cathode, which promoted the rapid start-up of anammox and treating wastewater with low ammonia concentration. The main metabolic pathway in step-up voltage operation was hydrazine to nitrogen, while in constant voltage operation was hydroxylamine oxidation pathway. These findings provided a new insight into the enhancement and operation of anammox system. © 2023 Elsevier Ltd
Keyword:
Reprint Author's Address:
Email:
Source :
Bioresource Technology
ISSN: 0960-8524
Year: 2023
Volume: 384
1 1 . 4 0 0
JCR@2022
ESI Discipline: BIOLOGY & BIOCHEMISTRY;
ESI HC Threshold:16
Cited Count:
SCOPUS Cited Count: 19
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 7
Affiliated Colleges: