Indexed by:
Abstract:
Design and fabrication of feasible remediation composites for total Cr (Cr(T)) removal is still challenging but urgently required. Herein, eco-friendly expanded vermiculite (VE) is integrated with a photoactive covalent organic framework (COF) polymer, in which photoinduced electrons of surface anchored COF can freely transfer to Cr(VI) for chemical reduction, and layered expanded VE allows ion exchange between resultant Cr(III) cations and interlayered K+, Ca2+, Mg2+, Na+, etc. The Cr(T) removal capacities of the surface-modified VE with important parameters (solution pH value, initial Cr(VI) concentration, etc.) are discussed extensively to understand how to select the best conditions for optimum Cr(T) removal performance. More interestingly, from a circular economy view point, spent Cr-loading VE-based waste can serve as a photocatalyst towards oxidation conversion of ciprofloxacin and NO gas subsequently. Explanations for different effects on physicochemical properties as well as catalytic activities of the reused Cr-loading waste are given. This strategy could provide valuable and promising contribution towards the development of sustainable low-cost mineral materials for Cr(T) removal. These findings also shed new light on the research of recycling spent photocatalyst for resource and reutilization. © 2023
Keyword:
Reprint Author's Address:
Email:
Source :
Journal of Colloid and Interface Science
ISSN: 0021-9797
Year: 2023
Volume: 652
Page: 218-230
9 . 9 0 0
JCR@2022
ESI Discipline: CHEMISTRY;
ESI HC Threshold:20
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 10
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 12
Affiliated Colleges: