Indexed by:
Abstract:
一种基于灰色支持向量机的滚动轴承故障诊断与预测的方法,滚动轴承作为机械设备中的关键部件,其运行状态的优劣往往影响到整台设备的运行性能。本发明提出了基于GM(1,1) SVM的滚动轴承故障诊断及预测方法。提取滚动轴承各类故障和正常状态下的振动信号时域及频域特征值,选取重要特征参数建立预测模型——灰色模型,进行特征值预测;使用轴承各类故障特征值和正常状态特征值训练二叉树支持向量机,构造滚动轴承决策树判别故障,实现对故障类型的分类,从而达到对轴承故障诊断,并通过预测值与所训练的支持向量机实现故障预测的目的。
Keyword:
Reprint Author's Address:
Email:
Patent Info :
Type: 发明授权
Patent No.: CN201510016333.8
Filing Date: 2015-01-13
Publication Date: 2017-04-26
Pub. No.: CN104596767B
Applicants: 北京工业大学;;北京思维鑫科信息技术有限公司
Legal Status: 未缴年费
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 20
Affiliated Colleges: