Indexed by:
Abstract:
In this paper, the diffusion process of Cu3Sn/Cu interface in lead-free solder joints was investigated using molecular dynamics (MD) technique with the modified embedded atomic method (MEAM) potentials. The diffusion behavior of different atoms was analyzed and the diffusion activation energies was obtained. In addition, the thickness of diffusion transition zone was acquired based on the empirical equation of diffusion. The simulation results indicate that the Cu atoms predominantly diffuse into the Cu3Sn side in the process of diffusion. The Cu atoms diffuse slowly but deeply diffuse into the interior of Cu3Sn, whereas the atoms of Cu3Sn diffuse with high rate but hardly diffuse into the interior of Cu. Based on the Arrhenius relation and equation of Einstein, the diffusion activation energies of Cu lattice atoms at interface is 172.76 kJ/mol, and the Cu and Sn atoms in Cu3Sn lattice are 52.48 and 77.86 kJ/mol, respectively. © 2017, Editorial Board of Transactions of the China Welding Institution, Magazine Agency Welding. All right reserved.
Keyword:
Reprint Author's Address:
Email:
Source :
Transactions of the China Welding Institution
ISSN: 0253-360X
Year: 2017
Issue: 8
Volume: 38
Page: 50-54
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 3
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 6
Affiliated Colleges: