Indexed by:
Abstract:
Emotion recognition is widely used in many areas, such as medicine and education. Due to the obvious difference in duration and intensity between micro and macro expression, the same model cannot be used to classify emotions precisely. In this paper, an algorithm for emotion recognition based on graph neural network is proposed. The proposed method involves four key steps. Firstly, data augmentation is used to increase the diversity of original data. Secondly, graph network is built based on feature points. The feature points Euclidean distance is calculated as the initial value of the matrix. Thirdly, Laplacian matrix is obtained according to the matrix. Finally, graph neutral network is utilized to bridge the relationship between feature vectors and emotions. In addition, a new dataset named FEC-13 is provided by subdivided traditional six kinds of emotions to thirteen categories according to the intensity of emotions. The experimental results show that a high accuracy is reached with a small amount of training data, especially CASME II dataset, which achieves an accuracy of 95.49%. A cross-database study indicates that proposed method has high generalization performance and the accuracy of FEC-13 dataset is 74.99%. © 2021, Springer Nature Singapore Pte Ltd.
Keyword:
Reprint Author's Address:
Email:
Source :
ISSN: 1865-0929
Year: 2021
Volume: 1397 CCIS
Page: 472-480
Language: English
Cited Count:
SCOPUS Cited Count: 1
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 10
Affiliated Colleges: