Indexed by:
Abstract:
Carbon fibre-reinforced polymer (CFRP) straps can be utilised as tension members in structures on account of their high-strength properties. The development of an effective anchorage device for CFRP straps that can fully utilise the strength of straps before anchorage failure is an ongoing technical challenge. To address such knowledge gap, a novel anchorage device termed winding-wedge anchorage that combines winding and wedge anchorage mechanisms is reported herein. For the winding anchorage component, different numbers of winding turns are applied. For the wedge anchorage component, three different types of wedge anchorage systems are investigated namely bonding, friction clamping, and friction non-clamping. Initially, the working mechanism, theoretical winding–wedge anchorage model (herein theoretical model), and design parameters are determined. Experimental and finite element analyses are then reported to assess the behaviour of the anchorage including failure modes and anchorage efficiencies. The accuracy of the theoretical model is also reported. It is concluded that the efficiency of the anchorage device is primarily dependent on the wedge anchorage component. Moreover, the bonding wedge anchorage component performed better than the other two wedge anchorage systems. The theoretical model and experimental results revealed that 1.5 winding turns results in an optimal interaction between the winding and wedge anchorages components. © 2023 The Authors
Keyword:
Reprint Author's Address:
Email:
Source :
Case Studies in Construction Materials
ISSN: 2214-5095
Year: 2023
Volume: 19
6 . 2 0 0
JCR@2022
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 4
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: