Indexed by:
Abstract:
With the rapid development of industry, the amount of wastewater discharge is increasing. In order to improve the efficiency of the wastewater treatment process (WWTP), we often desire that the dissolved oxygen (DO) concentration and the nitrate nitrogen (NO) concentration can be controlled to track set values. However, the wastewater treatment system is a type of unknown nonlinear plant with time-varying dynamics and strong disturbances. Some traditional control methods are difficult to achieve this goal. To overcome these challenges, a supplementary heuristic dynamic programming (SUP-HDP) control scheme is established by combining the traditional control method and heuristic dynamic programming (HDP). A parallel control structure is constructed in the SUP-HDP control scheme, which not only complements the shortcomings of traditional control schemes in learning and adaptive abilities but also improves the convergence speed and the stability of the learning process of HDP. Besides, the convergence proof of the designed control scheme is provided. The SUP-HDP control scheme is implemented utilizing neural networks. Finally, we validate the effectiveness of the SUP-HDP control method through a benchmark simulation platform for the WWTP. Compared with other control methods, SUP-HDP has better control performance. © 2024 Elsevier Ltd
Keyword:
Reprint Author's Address:
Email:
Source :
Expert Systems with Applications
ISSN: 0957-4174
Year: 2024
Volume: 247
8 . 5 0 0
JCR@2022
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 3
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 7
Affiliated Colleges: