Indexed by:
Abstract:
Endovascular coiling is the predominant method for treating cerebral aneurysms. Extensive reports on selecting coil length, hardness, and material are available. However, the impact of coil diameter on postoperative outcomes remains unclear. This study enrolled six personalized geometric models of intracranial aneurysms: three bifurcation aneurysms and three sidewall aneurysms. Four coil models were constructed by changing the coil diameter. Coil embolization was simulated using the finite element method. Computational fluid dynamics was used to characterize hemodynamics in the aneurysms after embolization. Evaluation parameters included velocity reduction, wall shear stress (WSS), low WSS (LWSS), oscillatory shear index (OSI), relative residence time (RRT), and residual flow volume in the aneurysms. At the peak time (t = 0.17 s), the proportion of LWSS area in bifurcation aneurysms increase with the rise in coil diameter: 0.8D, 71.28 ± 12.62% versus 1D, 74.97 ± 19.17% versus 1.2D, 78.88 ± 18.56% versus 1.4D, 84.00 ± 11.53% (mean ± SD). The proportion of high OSI area decreases as the coil diameter increases: 0.8D, 4.41% ± 2.82% versus 1.0D, 3.78 ± 3.33% versus 1.2D, 2.28% ± 1.77% versus 1.4D, 1.58% ± 1.11% (mean ± SD). The proportion of high RRT area increases as the coil diameter rises: 0.8D, 3.40% ± 1.68% versus 1.0D, 7.67 ± 4.12% versus 1.2D, 9.84% ± 9.50% versus 1.4D, 22.29% ± 14.28% (mean ± SD). Side wall aneurysms do not exhibit the aforementioned trend. Bifurcation aneurysms plugged with a coil of 1.4 times the diameter have the largest RFVs (<10 mm/s) within the group. Aforementioned patterns are not found in sidewall aneurysms. In the treatment of aneurysms with coiling, varying coil diameters can result in different hemodynamic environments within the aneurysm. Larger coil diameters have improved hemodynamic performance for bifurcation aneurysms. However, coil diameter and embolization effectiveness have no significant relationship for sidewall aneurysms. © 2024 John Wiley & Sons Ltd.
Keyword:
Reprint Author's Address:
Email:
Source :
International Journal for Numerical Methods in Biomedical Engineering
ISSN: 2040-7939
Year: 2024
Issue: 3
Volume: 40
2 . 1 0 0
JCR@2022
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 2
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 8
Affiliated Colleges: