Indexed by:
Abstract:
As one of the most widespread social dynamics, cooperative behavior is among the most fascinating collective phenomena. Several animal species, from social insects to human beings, feature social groups altruistically working for a common benefit. This collaborative conduct pervades the actions and opinions of individuals, yielding strategic decision-making between political, religious, ethnic, and economic social puzzles. Here, we explore how cooperative behavior phenomena impact collective opinion dynamics and entropy generation in social groups. We select a random fraction f of community members as collaborative individuals and model the opinion dynamics using a social temperature parameter q that functions as a social anxiety noise. With probability q, regular individuals oppose their companions about a social decision, assuming group dissent. Collaborative agents experience a reduced effective social noise μq, where 0<μ<1 is the social anxiety noise sensibility parameter that enhances social validation. We perform numerical simulations and mean-field analysis and find the system undergoes nonequilibrium order–disorder phase transitions with expressive social entropy production. Our results highlight the effects of a social anxiety attenuation level in improving group consensus and the emergence of cooperative dynamics as a natural maximization of entropy production in noisy social groups, thus inducing exuberant collective phenomena in complex systems. © 2024 Elsevier Ltd
Keyword:
Reprint Author's Address:
Email:
Source :
Chaos, Solitons and Fractals
ISSN: 0960-0779
Year: 2024
Volume: 181
7 . 8 0 0
JCR@2022
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 6
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 13
Affiliated Colleges: