• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Dong, Tingjun (Dong, Tingjun.) | Zhang, Li (Zhang, Li.) | Hao, Shiwei (Hao, Shiwei.) | Yang, Jiachun (Yang, Jiachun.) | Peng, Yongzhen (Peng, Yongzhen.)

Indexed by:

SCIE

Abstract:

Photocatalytic materials-microbial biohybrid systems pave the way for solar-driven wastewater nitrogen removal. In this study, interspecies cooperation in photogenerated electron transfer and efficient nitrogen removal mechanism in the g-C 3 N 4 -anammox consortia biohybrid system were first deciphered. The results indicated that the essential extracellular electron carriers (cytochrome c and flavin) for anammox genomes were provided by associated bacteria (BACT3 and CHLO2). This cooperation, regulated by the ArcAB system and electron transfer flavoprotein, made anammox bacteria the primary photogenerated electron sink. Furthermore, an efficient photogenerated electron harness was used to construct a reductive glycine pathway (rGlyP) in anammox bacteria inventively, which coexisted with the Wood - Ljungdahl pathway (WLP), constituting a dualpathway carbon fixation model, rGlyP-WLP. Carbon fixation products efficiently contributed to the tricarboxylic acid cycle, while inhibiting electron diversion in anabolism. Photogenerated electrons were targeted channeled into nitrogen metabolism-available electron carriers, enhancing anammox and dissimilatory nitrate reduction to ammonium (DNRA) processes. Moreover, ammonia assimilation by the glycine cleavage system in rGlyP established an alternative ammonia removal route. Ultimately, multi-pathway nitrogen removal involving anammox, DNRA, and rGlyP achieved 100 % ammonia removal and 94.25 % total nitrogen removal efficiency. This study has expanded understanding of anammox metabolic diversity, enhancing its potential application in carbon-neutral wastewater treatment.

Keyword:

Efficient nitrogen removal Solar energy Photogenerated electrons Metabolic regulation Anammox Meta-omics analysis

Author Community:

  • [ 1 ] [Dong, Tingjun]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China
  • [ 2 ] [Zhang, Li]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China
  • [ 3 ] [Hao, Shiwei]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China
  • [ 4 ] [Peng, Yongzhen]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China
  • [ 5 ] [Yang, Jiachun]China Coal Technol & Engn Grp Co Ltd, Tokyo 1000011, Japan

Reprint Author's Address:

  • [Zhang, Li]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment, Key Lab Beijing Water Qual Sci & Water Environm R, Beijing 100124, Peoples R China;;

Show more details

Related Keywords:

Source :

WATER RESEARCH

ISSN: 0043-1354

Year: 2024

Volume: 255

1 2 . 8 0 0

JCR@2022

Cited Count:

WoS CC Cited Count: 11

SCOPUS Cited Count: 11

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 6

Affiliated Colleges:

Online/Total:777/10602952
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.