Indexed by:
Abstract:
This paper introduces an innovative methodology designed for intrinsic sensing of the adhesion state in directional dry adhesives. Rooted in the inherent shear actuation requirements of these adhesives, the sensing framework incorporates an elastic beam model for a single seta and an equivalent spring model for setae arrays during actuation, facilitating the transformation of complex micro -scale contact issues into relatively simple mechanical measurements. Using microwedge adhesives as a representative case study, the methodology is validated by a series of quantitative experiments and an experimental robotic gripper scenario, in which a straightforward and cost-effective commercial strain gauge proves competent for complex contact state sensing. The proposed methodology indicates substantial implications for improving the operational performance and expanding the application range of gecko -inspired adhesive operations.
Keyword:
Reprint Author's Address:
Email:
Source :
SENSORS AND ACTUATORS A-PHYSICAL
ISSN: 0924-4247
Year: 2024
Volume: 374
4 . 6 0 0
JCR@2022
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 6
Affiliated Colleges: