• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Huang, Shuai (Huang, Shuai.) | Guan, Baolu (Guan, Baolu.) (Scholars:关宝璐) | Li, Jing (Li, Jing.)

Indexed by:

EI Scopus SCIE

Abstract:

The electron transport layer (ETL)-free perovskite solar cells (PSCs) have gained significant interest by simplifying the manufacture process and reducing the time/energy required for the fabrication of ETLs. Unfortunately, the performance of these ETL-free PSCs still lags behind those of the conventional counterparts due to the slow electron extraction and undesired interfacial charge recombination loss at the buried interface. In this work, a facile and multifunctional biocolina thin layer is incorporated on the bottom electrodes to regulate the interface energy level alignment by forming an interface dipole layer, resulting in a suppressed nonradiative recombination and an improved charge extraction. Furthermore, the biocolina thin layer possess the capability to passivate the surface defects within the perovskite films while simultaneously facilitate the formation of perovskite crystals. Consequently, a remarkable enhancement in photovoltaic performance is observed in the biocolina-based ETL-free PSCs with an increase from 15.96 % to an outstanding 20.01 %. Additionally, the biocolina extends the stability and relieves the hysteresis effect through the interface defect passivation and inhibition of interface charge accumulation. This research contributes to the development of cost-effective, simplified designs for highly efficient ETL-free PSCs by modifying the bottom electrodes. A multifunctional and efficient biocolina thin layer is incorporated on the bottom electrodes to regulate the interface energy level alignment and passivate the surface defects within the perovskite films in the electron transport layer-free perovskite solar cells, achieving a decent efficiency of 20.01 % with an ameliorated J-V hysteresis and environmental stability. image

Keyword:

band bending work function carrier recombination biocolina Perovskite

Author Community:

  • [ 1 ] [Huang, Shuai]Beijing Univ Technol, Coll Elect Sci & Technol, Key Lab Optoelect Technol, Minist Educ, Beijing 100124, Peoples R China
  • [ 2 ] [Guan, Baolu]Beijing Univ Technol, Coll Elect Sci & Technol, Key Lab Optoelect Technol, Minist Educ, Beijing 100124, Peoples R China
  • [ 3 ] [Li, Jing]Chinese Acad Sci, Tech Inst Phys & Chem, Key Lab Photochem Convers & Optoelect Mat, Beijing 100190, Peoples R China

Reprint Author's Address:

  • [Guan, Baolu]Beijing Univ Technol, Coll Elect Sci & Technol, Key Lab Optoelect Technol, Minist Educ, Beijing 100124, Peoples R China;;

Show more details

Related Keywords:

Source :

CHEMSUSCHEM

ISSN: 1864-5631

Year: 2024

Issue: 19

Volume: 17

8 . 4 0 0

JCR@2022

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 4

Affiliated Colleges:

Online/Total:711/10649681
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.