Indexed by:
Abstract:
This paper presents a multi-member automatic structural modeling (MASM) method for high-thrust deviation monitoring of prefabricated cable domes. Point cloud data generated by three-dimensional (3D) laser scanning were segmented into structural modules to effectively reduce the method's computational complexity. A multimember central shrinkage algorithm was developed for skeleton-point recognition. Subsequently, skeleton members were detected with sequentially identified joints, and the structural model of the cable dome was built. The MASM method was validated with respect to its 1) accuracy, ensuring a satisfactory signal-to-noise ratio, and 2) efficiency, ensuring competitive runtime. The use case of the cable-dome deviation monitoring was studied in detail. The proposed MASM method systematically evaluates prefabricated cable domes with multi-section members. This study enables high-fidelity analysis using a structural digital twin for predicting future structural performance. © 2024 Elsevier B.V.
Keyword:
Reprint Author's Address:
Email:
Source :
Automation in Construction
ISSN: 0926-5805
Year: 2024
Volume: 165
1 0 . 3 0 0
JCR@2022
Cited Count:
SCOPUS Cited Count: 4
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 6
Affiliated Colleges: