Indexed by:
Abstract:
In this paper, the competition mechanism between protectiveness and harmfulness of oxidation, as well as the effects of cycle period, mean stress and temperature on the damage behavior of TA15 titanium alloy are revealed under multiaxial thermo-mechanical fatigue loading. Based on the damage mechanism, a high-temperature environmental damage model is proposed under multiaxial thermo-mechanical fatigue loading first, then a life prediction method is developed by combining a multiaxial fatigue damage model. The experimental verification results under uniaxial and multiaxial thermo-mechanical fatigue loadings showed that almost all of the prediction errors are within a factor of 2.
Keyword:
Reprint Author's Address:
Email:
Source :
ENGINEERING FRACTURE MECHANICS
ISSN: 0013-7944
Year: 2024
Volume: 308
5 . 4 0 0
JCR@2022
Cited Count:
WoS CC Cited Count: 3
SCOPUS Cited Count: 4
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 8
Affiliated Colleges: