Indexed by:
Abstract:
We propose a parameter-free and locking-free enriched Galerkin method of arbitrary order for solving the linear elasticity problem in both two and three space dimensions. Our method uses an approximation space that enriches the vector-valued continuous Galerkin space of order k with some discontinuous piecewise polynomials. To the best of our knowledge, it extends the locking-free enriched Galerkin space in Yi et al. (2022) to high orders for the first time. Compared to the continuous Galerkin method, the proposed method is locking-free with only k d(- 1) additional degree of freedom on each element. The parameter-free property of our method is realized by integrating the enriched Galerkin space into the framework of the modified weak Galerkin method. We rigorously establish the well-posedness of the method and provide optimal error estimates for the compressible case. Extensive numerical examples confirm both the accuracy and the locking-free property of the proposed method.
Keyword:
Reprint Author's Address:
Source :
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING
ISSN: 0045-7825
Year: 2024
Volume: 432
7 . 2 0 0
JCR@2022
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: