• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Chen, Xia (Chen, Xia.) | Qu, Linmin (Qu, Linmin.) | Zhang, Mingxuan (Zhang, Mingxuan.) | Wu, Yuting (Wu, Yuting.) | Lu, Yuanwei (Lu, Yuanwei.)

Indexed by:

EI Scopus SCIE

Abstract:

With the continuous increase in energy demand, the exploration and research of new energy sources are becoming increasingly important. Molten salt nanofluids as solar thermal conversion heat transfer and storage media are gradually becoming widespread. To futher enhance the influence of types and concentrations of multiwalled carbon nanotubes (MWCNTS) on the thermal properties of Solar and Hitec salt, short multi-walled carbon nanotubes (S-MWCNTS), MWCNTS, and carboxylated carbon nanotubes (COOH-MWCNTS) with the same size but different types were used as additives to prepare molten salt nanofluids. Specific heat (Cp), thermal conductivity, and other parameters were experimentally measured and analyzed. The results demonstrated that the addition of 0.5 wt% S-MWCNTS resulted in the most significant enhancement in Cp and thermal conductivity, with an increase of 13.79 % and 78.18 % compared to Solar salt, and an increase of 21.13 % and 130.69 % compared to Hitec salt. Scanning electron microscopy (SEM) observation showed that the molten salt nanofluid containing 0.5 wt% S-MWCNTS and COOH-MWCNTS exhibited a densely stacked network structure, which increased its surface area. Based on these findings, further research was conducted on the thermal properties of SMWCNTS nanoparticles on Solar and Hitec salt at different concentrations. 0.3 wt% S-MWCNTS resulted in the most significant enhancement in Cp, which was 22.07 % higher than Solar salt and 23.95 % higher than Hitec salt; The maximum thermal conductivity improvement of adding 0.6 wt% S-MWCNTS to Solar salt is 101.14 %, and the maximum thermal conductivity improvement of adding 0.5 wt% S-MWCNTS to Hitec salt is 130.69 %.

Keyword:

Solar energy Multi-walled carbon nanotubes Specific heat capacity Energy storage Molten salt

Author Community:

  • [ 1 ] [Chen, Xia]Beijing Univ Technol, MOE Key Lab Enhanced Heat Transfer & Energy Conser, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China
  • [ 2 ] [Qu, Linmin]Beijing Univ Technol, MOE Key Lab Enhanced Heat Transfer & Energy Conser, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China
  • [ 3 ] [Zhang, Mingxuan]Beijing Univ Technol, MOE Key Lab Enhanced Heat Transfer & Energy Conser, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China
  • [ 4 ] [Wu, Yuting]Beijing Univ Technol, MOE Key Lab Enhanced Heat Transfer & Energy Conser, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China
  • [ 5 ] [Lu, Yuanwei]Beijing Univ Technol, MOE Key Lab Enhanced Heat Transfer & Energy Conser, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China

Reprint Author's Address:

  • [Chen, Xia]Beijing Univ Technol, MOE Key Lab Enhanced Heat Transfer & Energy Conser, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China;;

Show more details

Related Keywords:

Source :

SOLAR ENERGY MATERIALS AND SOLAR CELLS

ISSN: 0927-0248

Year: 2024

Volume: 278

6 . 9 0 0

JCR@2022

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 7

Affiliated Colleges:

Online/Total:649/10560382
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.