Indexed by:
Abstract:
In many fields, time series prediction is gaining more and more attention, e.g., air pollution, geological hazards, and network traffic prediction. Water quality prediction is based on historical data to predict future water quality. However, it is difficult to learn a representation map from a time series that captures the trends and fluctuations to effectively remove noise from time series data and capture complex nonlinear relationships. To solve these problems, this work proposes a time series prediction model, called PSGT for short, which integrates Patch Savitsky-Golay filtering and Transformer. First, this work adopts a Patching method to embed sub-time series data and obtains the trends and semantic information of the time series. Second, it uses the Savitsky-Golay filtering to effectively remove the noise data in the patch and improve the prediction accuracy. Third, it uses a Transformer mechanism to address the nonlinear problem of water quality time series and improve long-term prediction capability. Two real-world datasets are utilized to evaluate the proposed PSGT, and experiments prove that PSGT performs better than other benchmark models by at least 6%. © 2024 IEEE.
Keyword:
Reprint Author's Address:
Email:
Source :
ISSN: 1062-922X
Year: 2024
Page: 4827-4832
Language: English
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 10
Affiliated Colleges: