Indexed by:
Abstract:
Dengue virus (DENV) is a significant significant mosquito-borne pathogen. Its RNA-dependent RNA polymerase (RdRp) plays a crucial role in viral replication, making it a critical target for antiviral drug development. The goal of this study was to identify potential inhibitors of the DENV RdRp through virtual screening and experimental assays. In this study, based on Topscience and TargetMol database. 47 compounds were stand out from 1.1 million compounds with high binding energies between −77.24 kcal/mol and−44.08 kcal/mol by initial virtual screening. Their inhibition activity against dengue virus was evaluated by cell-based antiviral and RdRp enzyme assays, and 4 compounds (R2, R29, R37, and R39) identified in our study demonstrated promising in vitro activity, with IC₅₀ values of less than 10 μM, indicating their strong potential as antiviral agents against DENV. The RdRp enzyme inhibition assay revealed that R37 demonstrated significant activity against the DENV RdRp enzyme, with an IC₅₀ of 10.86 ± 2.06 μM, which was lower than that of 3’-dATP (IC₅₀ = 30.09 ± 8.26 μM). These 4 compounds were further subjected to DFT calculations and MD simulation, which not only provided valuable structural insights but also enhanced the reliability of our findings by offering a detailed understanding of the stability and binding interactions of the top compounds with the DENV RdRp enzyme. These results suggest that the identified compounds are promising candidates for novel DENV RdRp inhibitors and provide both theoretical and experimental groundwork for further optimization and validation. © 2025 Elsevier B.V.
Keyword:
Reprint Author's Address:
Email:
Source :
International Journal of Biological Macromolecules
ISSN: 0141-8130
Year: 2025
Volume: 305
8 . 2 0 0
JCR@2022
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 7
Affiliated Colleges: