Indexed by:
Abstract:
Techniques used to analyze exceedances over a high threshold are in great demand for research in economics, environmental science, and other fields. The generalized Pareto distribution (GPD) has been widely used to fit observations exceeding the tail threshold in the peaks over threshold (POT) framework. Parameter estimation and threshold selection are two critical issues for threshold-based GPD inference. In this work, we propose a new GPD-based estimation approach by combining the method of moments and likelihood moment techniques based on the least squares concept, in which the shape and scale parameters of the GPD can be simultaneously estimated. To analyze extreme data, the proposed approach estimates the parameters by minimizing the sum of squared deviations between the theoretical GPD function and its expectation. Additionally, we introduce a recently developed stopping rule to choose the suitable threshold above which the GPD asymptotically fits the exceedances. Simulation studies show that the proposed approach performs better or similar to existing approaches, in terms of bias and the mean square error, in estimating the shape parameter. In addition, the performance of three threshold selection procedures is assessed by estimating the value-at-risk (VaR) of the GPD. Finally, we illustrate the utilization of the proposed method by analyzing air pollution data. In this analysis, we also provide a detailed guide regarding threshold selection.
Keyword:
Reprint Author's Address:
Email:
Source :
MATHEMATICS
Year: 2019
Issue: 5
Volume: 7
2 . 4 0 0
JCR@2022
ESI Discipline: MATHEMATICS;
ESI HC Threshold:54
JCR Journal Grade:1
Cited Count:
WoS CC Cited Count: 17
SCOPUS Cited Count: 20
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 9
Affiliated Colleges: