• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Yang, Jinxin (Yang, Jinxin.) | Ji, Changwei (Ji, Changwei.) (Scholars:纪常伟) | Wang, Shuofeng (Wang, Shuofeng.) | Shi, Cheng (Shi, Cheng.) | Wang, Du (Wang, Du.) | Ma, Zedong (Ma, Zedong.) | Yang, Zixuan (Yang, Zixuan.)

Indexed by:

EI Scopus SCIE

Abstract:

The compound intake possesses large port area. Applying it in Wankel rotary engine (WRE) could increase volumetric efficiency and reduce pumping loss. To investigate the effect of the compound intake on the mixture formation and combustion process in gasoline WREs with hydrogen port and direct injected (HPI and HDI) enrichment, a three-dimensional computational fluid dynamics (CFD) model was established and validated. Investigation results showed that the peripheral-ported intake flow plays a leading role in the compound-ported WRE. Because the peripheral-ported intake flow has the same direction with the rotor movement, the formation time of mainstream flow field is shortened and the mean flow speed is increased, the flame propagation in the same direction with mainstream flow field is accelerated. Meanwhile, the improvements in volumetric efficiency and quality of in-charged mixtures result in the rise of temperature and pressure at spark timing, which could also improve the initial thermal conditions. Therefore, the compound intake effectively accelerates the combustion process in WRE. In HPI conditions, compared with the side-ported WRE, the peak in-cylinder pressure and indicated thermal efficiency in compound-ported WRE are respectively increased by 4.5% and 3.9%. In HDI conditions, the flame could propagate to the rear combustion chamber and eliminate the unburned zone, the maximum in-cylinder pressure and indicated thermal efficiency in side-ported WRE with HDI are 84.7% and 6.6% higher than those of in side-ported WRE with HPI. At the same time, the compound intake could further increase the in-cylinder pressure and indicated thermal efficiency by 6.8% and 2.5%, respectively. However, the improved combustion performance increases the in-cylinder temperature, which provides a suitable thermal-atmosphere for nitrogen oxide (NOx) formation. The compound intake increases mass fractions of NOx emissions from 0.111% to 0.141% in HPI conditions and those from 0.268% to 0.284% in HDI conditions. Considering the compound intake promotes the combustion characteristics and effectively decreases carbon monoxide (CO) emission from 0.043% to 0.033% in HPI conditions, and from 0.008% to 0.003% in HDI conditions, it is a feasible way to improve the performance of WREs. Especially, combining it with HDI could obtain a better engine performance under low engine speed and part load conditions.

Keyword:

Wankel rotary engine Combustion process Mixture formation Gasoline Hydrogen Compound intake

Author Community:

  • [ 1 ] [Yang, Jinxin]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Lab New Energy Vehicles, Key Lab Beijing Reg Air Pollut Control, Beijing 100124, Peoples R China
  • [ 2 ] [Ji, Changwei]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Lab New Energy Vehicles, Key Lab Beijing Reg Air Pollut Control, Beijing 100124, Peoples R China
  • [ 3 ] [Wang, Shuofeng]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Lab New Energy Vehicles, Key Lab Beijing Reg Air Pollut Control, Beijing 100124, Peoples R China
  • [ 4 ] [Wang, Du]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Lab New Energy Vehicles, Key Lab Beijing Reg Air Pollut Control, Beijing 100124, Peoples R China
  • [ 5 ] [Ma, Zedong]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Lab New Energy Vehicles, Key Lab Beijing Reg Air Pollut Control, Beijing 100124, Peoples R China
  • [ 6 ] [Yang, Zixuan]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Lab New Energy Vehicles, Key Lab Beijing Reg Air Pollut Control, Beijing 100124, Peoples R China
  • [ 7 ] [Yang, Jinxin]Beijing Univ Technol, Collaborat Innovat Ctr Elect Vehicles Beijing, Beijing 100124, Peoples R China
  • [ 8 ] [Ji, Changwei]Beijing Univ Technol, Collaborat Innovat Ctr Elect Vehicles Beijing, Beijing 100124, Peoples R China
  • [ 9 ] [Wang, Shuofeng]Beijing Univ Technol, Collaborat Innovat Ctr Elect Vehicles Beijing, Beijing 100124, Peoples R China
  • [ 10 ] [Wang, Du]Beijing Univ Technol, Collaborat Innovat Ctr Elect Vehicles Beijing, Beijing 100124, Peoples R China
  • [ 11 ] [Ma, Zedong]Beijing Univ Technol, Collaborat Innovat Ctr Elect Vehicles Beijing, Beijing 100124, Peoples R China
  • [ 12 ] [Yang, Zixuan]Beijing Univ Technol, Collaborat Innovat Ctr Elect Vehicles Beijing, Beijing 100124, Peoples R China
  • [ 13 ] [Shi, Cheng]Beijing Inst Technol, Sch Mech Engn, Beijing 100081, Peoples R China

Reprint Author's Address:

  • 纪常伟

    [Ji, Changwei]Beijing Univ Technol, Coll Environm & Energy Engn, Beijing Lab New Energy Vehicles, Key Lab Beijing Reg Air Pollut Control, Beijing 100124, Peoples R China;;[Ji, Changwei]Beijing Univ Technol, Collaborat Innovat Ctr Elect Vehicles Beijing, Beijing 100124, Peoples R China

Show more details

Related Keywords:

Source :

ENERGY CONVERSION AND MANAGEMENT

ISSN: 0196-8904

Year: 2019

Volume: 185

Page: 66-74

1 0 . 4 0 0

JCR@2022

ESI Discipline: ENGINEERING;

ESI HC Threshold:136

JCR Journal Grade:1

Cited Count:

WoS CC Cited Count: 37

SCOPUS Cited Count: 43

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 5

Online/Total:1197/10543183
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.